Search This Blog

Saturday 16 July 2011

TILL 2015 THEIR WILL BE ONLY PHOTOS OF TIGER

Already we have lost many specie of animals in last century. The animals are killed for commercial use,and for their skins.


In India in year1937 India had about 7000 tigers and now we have only 1411 tigers (estimated). Our national animal is extincting from our own country.Is there any one to save them. Can our next generation will be able to see tigers as we didn’t see many animals because no body was their to save them.



Can’t we take any precautionary measures against it. I know government has taken many measures to protect it but still it if not enough to protect them.


We have launched a campaign against protecting tigers  in India and world . ( www.saveourtigers.com ) According to the estimates of biologist our tigers will soon extinct in year 2015.


We can do many things to save them please support us. In India many tigers reserves are there but still their extincting, we can provide more security to protect them, breeding of tigers all over the world , saving as many tigers as possible as from their illness by hiring vet.doctors, protecting their natural habitat as forest, etc. In some cases even government is responsible for the extinct of tigers in security purpose of tigers. Not only tigers are in endangered  level of extinction but as well as lions of Africa and India, Blue whales in pacific ocean and sharks. Surely these fishes are killed to make cosmetic products from their skin and liver only for these thing they are killed. If one  rich person dies all even after death he is there in news , television, etc. But if a animal dies we tell “we don’t care of animals they are the trouble on earth”  is it good to say that. Even this generation does not have emotions against animals. If a animal kill’s a man you kill the animal back for protecting the man. eg : in Australia’s beach in 1980′s they killed many sharks when we asked why cause they started coming on the beach and tried to kill human . so they killed they sharks. so even if a human enters the region of animals and kills them illegally what we do? Nothing sit at home on a relaxing sofa holding a tea in hand and in other hand news paper and read and later forget it…. but if a animal kill’s a human when they go to office or any official  they spread this animal is very bad it killed a human.


A man gets anger if anyone comes and distrubs him but what can a tiger do,it also have anger 



it is waiting for her mother but it don't know its mother will come or not


why tigers comes to place where we live 
because we do the same with tigers not only tigers but many other animals

start saving tigers from now or else we will show a photo or toys to our sons and grandsons

Think before telling anything.. How much important is each and every animal in ecosystem.human have brain to think but that poor, helpless animals what else they can do than dieing or escaping for this human world. we say animals come into the villages or cities.why do they come? Actually they don’t come we go in theirs area.




tiger never asks for help it makes its own way but we can help it

YOU CANNOT ESCAPE THEIR IS SOME ON WHO IS WATCHING YOU

Friday 15 July 2011

SAVE THAT CUB

One of India’s largest mobile service providers Aircel has joined the fight to save India’s Royal Bengal tiger population from extinction.Save our tigers campaign, a great Aircel initiative by partnering with WWF India.Royal Bengal tiger, Indian National animal is in the state of extinction and there are only 1411 tigers left in INDIA which needs our help for survival. Join the Save our tigers campaign at Save Our Tigers.
It is so sad to know that the expected number of tigers in India is continuously decreasing. The tiger population has dropped to a current total of 1,411 in comparison to 40,000 tigers a hundred years ago. According to the recent survey carried out in India, it is noted that there is a sharp decline in their population to 1,411.
Tiger blog Only 1411 Left | Save Our Tigers : Aircel  & WWF Initiative
So friends, show your support for our national animal! Join the movement to stop India’s tigers from fading away. Save Our Tigers – an Aircel initiative in partnership with WWF India.Footballplayer Baichung Bhutia, Indian cricket captain M S Dhoni and Tamil actor Surya roar for the ” Save Our Tigers” campaign.

Tuesday 12 July 2011

SPREAD AWEARNESS ABOUT TIGERS TO WORLD

Spread the Word
Let everyone know that our tigers are on the brink of extinction and that they need us. Now. You can start by joining the Save Our Tigers movement on Facebook, Twitter and YouTube, and spreading the word wherever you go – online or offline

SMS
A short message can go a long way to help save our tigers. Let all your friends know about the movement through SMS – just type in your message and ask them to visit SaveOurTigers.com to join the roar


Write to Editors
Write a letter or an email to editors of popular newspapers and magazines, asking them to support the cause and highlight the urgency to save our tigers. The more people we can reach and inform, the louder our roar will be


Donate
Organizations such as WWF and The Corbett Foundation work for tiger conservation and need our active support. If possible, you can chip in with funds, volunteer for work or donate clothes, etc. for the forest guards by tying up with such organizations.

Volunteer for Our Tigers 
Your time is the most important contribution for our tigers. If you think you have the skills or the commitment to help the tigers on-site, do contact an NGO working for tiger conservation to volunteer for our tigers
Preserve our Natural Resources 
Loss of habitat is one of our tigers’ biggest problems. We can reduce pressure on forests by avoiding unnecessary use of forest-derived products, such as paper and timber

Be a Responsible Tourist 
Visit tiger sanctuaries and national parks and discover our country’s natural heritage. But please remember that the wilderness is to be experienced, not to be polluted by packets of chips, etc

AMITABH BACHCHAN

Amitabh Bachchan speaks on the six point agenda to encourage involvement in the movement to save a part of our heritage - our tigers - before it is lost forever.
Principal communication to Chief Ministers
Protecting the tiger, our national animal, and its forests, is crucial to the water, food and economic security of the state. These forests are life-saving infrastructures which will save lives, and livelihoods as climate change moves into higher gear.
Enhancing protection for these forests not only consolidates the ecological and economic foundation of the state, but would also prevents insurrectionists and terrorists, who are in league with the illegal timber and wildlife trade, from stealing forest wealth, which they are using to buy arms and ammunition and to sustain their cadres engaged in anti-national activities.
It is possible to offer guaranteed employment to all adults living in communities immediately surrounding tiger forests.
Immediate Action Points:
NDTV State Agendas : Read NDTV's state-wise agendas for 8 states »
At the turn of the century, there were around 40,000 tigers in India. This number has now decreased drastically. What started as a Royal Sport during the olden times is now a target of Poaching and Depleting Habitat. Our National Animal is fighting for its life! 

The rich biodiversity and natural capital of India can be witnessed in the Tiger Sanctuaries. Knowledge of these sanctuaries helps build awareness for the cause

aTiger FactsAt the turn of the century, there were around 40,000 tigers in India. This number has now decreased drastically.2009 was the worst year for tigers in India, with 86 deaths reported.There are 37 Tiger sanctuaries in India. However, 17 sanctuaries are on the verge of losing their tiger population.Corbett National Park is the oldest tiger park in India. It was created in 1936 as ‘Hailey National Park’.The Kanha National Park’s lush sal and bamboo forests, grassy meadows and ravines provided inspiration to Rudyard Kipling for his famous novel, The Jungle Book.

THE TRUTH ABOUT TIGERS

'The Truth about Tigers', produced and written by conservationist and wildlife film-maker Shekar Dattatri, is a must-watch for all those who are interested in saving India's tigers from extinction. The film guides viewers through the life of this magnificent predator and clearly explains why the big cats are disappearing. More importantly, it provides pointers on what India's government and citizens must do to save their national animal. An accompanying websitewww.truthabouttigers.org provides additional information on tigers and their conservation. The film combines stunning footage shots by some of the world’s leading cinematographers with deep insights from experts. It is a non-profit, non-commercial work meant to raise awareness about one of the planet's most iconic animals.





Information about the producer can be found on www.shekardattatri.com 


Click below to watch this documentary




Sunday 10 July 2011

NUCLEAR CHEMISTRY


From Wikipedia, the free encyclopedia
Nuclear chemistry is the subfield of chemistry dealing with radioactivity, nuclear processes and nuclear properties.
It is the chemistry of radioactive elements such as the actinides, radium and radon together with the chemistry associated with equipment (such as nuclear reactors) which are designed to perform nuclear processes. This includes the corrosion of surfaces and the behavior under conditions of both normal and abnormal operation (such as during an accident). An important area is the behavior of objects and materials after being placed into a nuclear waste storage or disposal site.
It includes the study of the super chemical effects resulting from the absorption of radiation within living animals, plants, and other materials. The radiation chemistry controls much of radiation biology as radiation has an effect on living things at the molecular scale, to explain it another way the radiation alters the biochemicals within an organism, the alteration of the biomolecules then changes the chemistry which occurs within the organism, this change in biochemistrythen can lead to a biological outcome. As a result nuclear chemistry greatly assists the understanding of medical treatments (such as cancer radiotherapy) and has enabled these treatments to improve.
It includes the study of the production and use of radioactive sources for a range of processes. These include radiotherapy in medical applications; the use ofradioactive tracers within industry, science and the environment; and the use of radiation to modify materials such as polymers.[1]
It also includes the study and use of nuclear processes in non-radioactive areas of human activity. For instance, nuclear magnetic resonance (NMR) spectroscopy is commonly used in synthetic organic chemistry and physical chemistry and for structural analysis in macromolecular chemistry.

After the discovery of
 X-rays by Wilhelm Röntgen, many scientists began to work on ionizing radiation. One of these was Henri Becquerel, who investigated the relationship between phosphorescence and the blackening of photographic plates. When Becquerel (working in France) discovered that, with no external source of energy, the uranium generated rays which could blacken (or fog) the photographic plate, radioactivity was discovered. Marie Curie (working in Paris) and her husband Pierre Curie isolated two new radioactive elements from uranium ore. They used radiometric methods to identify which stream the radioactivity was in after each chemical separation; they separated the uranium ore into each of the different chemical elements that were known at the time, and measured the radioactivity of each fraction. They then attempted to separate these radioactive fractions further, to isolate a smaller fraction with a higher specific activity (radioactivity divided by mass). In this way, they isolated polonium and radium. It was noticed in about 1901 that high doses of radiation could cause an injury in humans. Henri Becquerel had carried a sample of radium in his pocket and as a result he suffered a high localised dose which resulted in a radiation burn[6] this injury resulted in the biological properties of radiation being investigated, which in time resulted in the development of medical treatments.
[
edit]Early history
Ernest Rutherford, working in Canada and England, showed that radioactivity decay can be described by a simple equation (a linear first degree derivative equation, now called first order kinetics), implying that a given radioactive substance has a characteristic "half life" (the time taken for the amount of radioactivity present in a source to diminish by half). He also coined the terms alpha, beta and gamma rays, he converted nitrogen into oxygen, and most importantly he supervised the students who did the Geiger-Marsden experiment (gold leaf experiment) which showed that the 'plum pudding model' of the atom was wrong. In the plum pudding model, proposed by J. J. Thomson in 1904, the atom is composed of electrons surrounded by a 'cloud' of positive charge to balance the electrons' negative charge. To Rutherford, the gold foil experiment implied that the positive charge was confined to a very small nucleus leading first to the Rutherford model, and eventually to the Bohr model of the atom, where the positive nucleus is surrounded by the negative electrons.
In 1934 Marie Curie's daughter (Irène Joliot-Curie) and her husband were the first to create artificial radioactivity: they bombarded boron with alpha particles to make the neutron-poor isotope nitrogen-13; this isotope emitted positrons.[2] In addition, they bombarded aluminium and magnesium with neutrons to make new radioisotopes.
[edit]Main areas
Radiochemistry is the chemistry of radioactive materials, where radioactive isotopes of elements are used to study the properties and chemical reactions of non-radioactive isotopes (often within radiochemistry the absence of radioactivity leads to a substance being described as being inactive as the isotopes are stable).
For further details please see the page on radiochemistry.
[edit]Radiation chemistry
Radiation chemistry is the study of the chemical effects of radiation on matter; this is very different to radiochemistry as no radioactivity needs to be present in the material which is being chemically changed by the radiation. An example is the conversion of water into hydrogen gas and hydrogen peroxide.
[edit]Study of nuclear reactions
A combination of radiochemistry and radiation chemistry is used to study nuclear reactions such as fission and fusion. Some early evidence for nuclear fission was the formation of a short-lived radioisotope of barium which was isolated from neutron irradiated uranium (139Ba, with a half-life of 83 minutes and 140Ba, with a half-life of 12.8 days, are major fission products of uranium). At the time, it was thought that this was a new radium isotope, as it was then standard radiochemical practice to use a barium sulphate carrier precipitate to assist in the isolation of radium.[7]. More recently, a combination of radiochemical methods and nuclear physics has been used to try to make new 'superheavy' elements; it is thought that islands of relative stability exist where the nuclides have half-lives of years, thus enabling weighable amounts of the new elements to be isolated. For more details of the original discovery of nuclear fission see the work of Otto Hahn.[3]
[edit]The nuclear fuel cycle
The chemistry associated with any part of the nuclear fuel cycle, including nuclear reprocessing. The fuel cycle includes all the operations involved in producing fuel, from mining, ore processing and enrichment to fuel production (Front end of the cycle). It also includes the 'in-pile' behaviour (use of the fuel in a reactor) before the back end of the cycle. The back end includes the management of the used nuclear fuel in either a cooling pond or dry storage, before it is disposed of into an underground waste store or reprocessed.
[edit]Normal and abnormal conditions
The nuclear chemistry associated with the nuclear fuel cycle can be divided into two main areas, one area is concerned with operation under the intended conditions while the other area is concerned with maloperation conditions where some alteration from the normal operating conditions has occurred or (more rarely) an accident is occurring.
[edit]Reprocessing
[edit]Law
In the United States it is normal to use fuel once in a power reactor before placing it in a waste store. The long term plan is currently to place the used civilian reactor fuel in a deep store. This non-reprocessing policy was started in March 1977 because of concerns about nuclear weapons proliferation. President Jimmy Carter issued a Presidential directive which indefinitely suspended the commercial reprocessing and recycling of plutonium in the United States. This directive was likely an attempt by the United States to lead other countries by example, but many other nations continue to reprocess spent nuclear fuels. The Russian government under President Vladimir Putin repealed a law which had banned the import of used nuclear fuel, which makes it possible for Russians to offer a reprocessing service for clients outside Russia (similar to that offered by BNFL).
[edit]PUREX chemistry
The current method of choice is to use the PUREX liquid-liquid extraction process which uses a tributyl phosphate/hydrocarbon mixture to extract both uranium and plutonium from nitric acid. This extraction is of the nitrate salts and is classed as being of a solvation mechanism. For example the extraction of plutonium by an extraction agent (S) in a nitrate medium occurs by the following reaction.
Pu4+aq + 4NO3-aq + 2Sorganic --> [Pu(NO3)4S2]organic
A complex bond is formed between the metal cation, the nitrates and the tributyl phosphate, and a model compound of a dioxouranium(VI) complex with two nitrates and two triethyl phosphates has been characterised by X-ray crystallography.[4]
When the nitric acid concentration is high the extraction into the organic phase is favoured, and when the nitric acid concentration is low the extraction is reversed (the organic phase is stripped of the metal). It is normal to dissolve the used fuel in nitric acid, after the removal of the insoluble matter the uranium and plutonium are extracted from the highly active liquor. It is normal to then back extract the loaded organic phase to create a medium active liquor which contains mostly uranium and plutonium with only small traces of fission products. This medium active aqueous mixture is then extracted again by tributyl phosphate/hydrocarbon to form a new organic phase, the metal bearing organic phase is then stripped of the metals to form an aqueous mixture of only uranium and plutonium. The two stages of extraction are used to improve the purity of the actinide product, the organic phase used for the first extraction will suffer a far greater dose of radiation. The radiation can degrade the tributyl phosphate into dibutyl hydrogen phosphate. The dibutyl hydrogen phosphate can act as an extraction agent for both the actinides and other metals such as ruthenium. The dibutyl hydrogen phosphate can make the system behave in a more complex manner as it tends to extract metals by an ion exchange mechanism (extraction favoured by low acid concentration), to reduce the effect of the dibutyl hydrogen phosphate it is common for the used organic phase to be washed with sodium carbonate solution to remove the acidic degradation products of the tributyl phosphate.
[edit]New methods being considered for future use
The PUREX process can be modified to make a UREX (URanium EXtraction) process which could be used to save space inside high level nuclear waste disposal sites, such as Yucca Mountain nuclear waste repository, by removing the uranium which makes up the vast majority of the mass and volume of used fuel and recycling it as reprocessed uranium.
The UREX process is a PUREX process which has been modified to prevent the plutonium being extracted. This can be done by adding a plutonium reductant before the first metal extraction step. In the UREX process, ~99.9% of the Uranium and >95% of Technetium are separated from each other and the other fission products and actinides. The key is the addition of acetohydroxamic acid (AHA) to the extraction and scrub sections of the process. The addition of AHA greatly diminishes the extractability of Plutonium and Neptunium, providing greater proliferation resistance than with the plutonium extraction stage of the PUREX process.
Adding a second extraction agent, octyl(phenyl)-N, N-dibutyl carbamoylmethyl phosphine oxide(CMPO) in combination with tributylphosphate, (TBP), the PUREX process can be turned into the TRUEX (TRansUranic EXtraction) process this is a process which was invented in the USA by Argonne National Laboratory, and is designed to remove the transuranic metals (Am/Cm) from waste. The idea is that by lowering the alpha activity of the waste, the majority of the waste can then be disposed of with greater ease. In common with PUREX this process operates by a solvation mechanism.
As an alternative to TRUEX, an extraction process using a malondiamide has been devised. The DIAMEX (DIAMideEXtraction) process has the advantage of avoiding the formation of organic waste which contains elements other than Carbon, Hydrogen, Nitrogen, and Oxygen. Such an organic waste can be burned without the formation of acidic gases which could contribute to acid rain. The DIAMEX process is being worked on in Europe by the French CEA. The process is sufficiently mature that an industrial plant could be constructed with the existing knowledge of the process. In common with PUREX this process operates by a solvation mechanism.[8][9]
Selective Actinide Extraction (SANEX). As part of the management of minor actinides it has been proposed that the lanthanides and trivalent minor actinides should be removed from the PUREX raffinate by a process such as DIAMEX or TRUEX. In order to allow the actinides such as americium to be either reused in industrial sources or used as fuel the lanthanides must be removed. The lanthanides have large neutron cross sections and hence they would poison a neutron driven nuclear reaction. To date the extraction system for the SANEX process has not been defined, but currently several different research groups are working towards a process. For instance the French CEA is working on a bis-triaiznyl pyridine (BTP) based process.
Other systems such as the dithiophosphinic acids are being worked on by some other workers.
This is the UNiversal EXtraction process which was developed in Russia and the Czech Republic, it is a process designed to remove all of the most troublesome (Sr, Cs and minor actinides) radioisotopes from the raffinates left after the extraction of uranium and plutonium from used nuclear fuel. [10][11] The chemistry is based upon the interaction of caesium and strontium with poly ethylene oxide (poly ethylene glycol) [12] and a cobalt carborane anion (known as chlorinated cobalt dicarbollide) . The actinides are extracted by CMPO, and the diluent is a polar aromatic such as nitrobenzene. Other dilents such as meta-nitrobenzotrifluoride and phenyl trifluoromethyl sulfone [13] have been suggested as well.
[edit]Absorption of fission products on surfaces
Another important area of nuclear chemistry is the study of how fission products interact with surfaces; this is thought to control the rate of release and migration of fission products both from waste containers under normal conditions and from power reactors under accident conditions. It is interesting to note that, like chromateand molybdate, the 99TcO4 anion can react with steel surfaces to form a corrosion resistant layer. In this way, these metaloxo anions act as anodic corrosion inhibitors. The formation of 99TcO2 on steel surfaces is one effect which will retard the release of 99Tc from nuclear waste drums and nuclear equipment which has been lost before decontamination (e.g. submarine reactors lost at sea). This 99TcO2 layer renders the steel surface passive, inhibiting the anodic corrosion reaction. The radioactive nature of technetium makes this corrosion protection impractical in almost all situations. It has also been shown that 99TcO4 anions react to form a layer on the surface of activated carbon (charcoal) or aluminium.[5][14]. A short review of the biochemical properties of a series of key long lived radioisotopes can be read on line.[15]
99Tc in nuclear waste may exist in chemical forms other than the 99TcO4 anion, these other forms have different chemical properties.[16]
Similarly, the release of iodine-131 in a serious power reactor accident could be retarded by absorption on metal surfaces within the nuclear plant.[6]
[edit]Spinout areas
Some methods first developed within nuclear chemistry and physics have become so widely used within chemistry and other physical sciences that they may be best thought of as separate from normal nuclear chemistry. For example, the isotope effect is used so extensively to investigate chemical mechanisms and the use of cosmogenic isotopes and long-lived unstable isotopes in geology that it is best to consider much of isotopic chemistry as separate from nuclear chemistry.
[edit]Kinetics (use within mechanistic chemistry)
The mechanisms of chemical reactions can be investigated by observing how the kinetics of a reaction is changed by making an isotopic modification of a substrate, known as the kinetic isotope effect. This is now a standard method in organic chemistry. Briefly, replacing normal hydrogen (protons) by deuterium within a molecule causes the molecular vibrational frequency of X-H (for example C-H, N-H and O-H) bonds to decrease, which leads to a decrease in vibrational zero-point energy. This can lead to a decrease in the reaction rate if the rate-determining step involves breaking a bond between hydrogen and another atom.[7] Thus, if the reaction changes in rate when protons are replaced by deuteriums, it is reasonable to assume that the breaking of the bond to hydrogen is part of the step which determines the rate.
[edit]Uses within geology, biology and forensic science
Cosmogenic isotopes are formed by the interaction of cosmic rays with the nucleus of an atom. These can be used for dating purposes and for use as natural tracers. In addition, by careful measurement of some ratios of stable isotopes it is possible to obtain new insights into the origin of bullets, ages of ice samples, ages of rocks, and the diet of a person can be identified from a hair or other tissue sample. (See Isotope geochemistry and Isotopic signature for further details).
[edit]Biology
Within living things, isotopic labels (both radioactive and nonradioactive) can be used to probe how the complex web of reactions which makes up the metabolism of an organism converts one substance to another. For instance a green plant uses light energy to convert water and carbon dioxide into glucose by photosynthesis. If the oxygen in the water is labeled, then the label appears in the oxygen gas formed by the plant and not in the glucose formed in the chloroplasts within the plant cells.
For biochemical and physiological experiments and medical methods, a number of specific isotopes have important applications.
§  Stable isotopes have the advantage of not delivering a radiation dose to the system being studied; however, a significant excess of them in the organ or organism might still interfere with its functionality, and the availability of sufficient amounts for whole-animal studies is limited for many isotopes. Measurement is also difficult, and usually requires mass spectrometry to determine how much of the isotope is present in particular compounds, and there is no means of localizing measurements within the cell.
§  H-2 (deuterium), the stable isotope of hydrogen, is a stable tracer, the concentration of which can be measured by mass spectroscopy or NMR. It is incorporated into all cellular structures. Specific deuterated compound can also be produced.
§  N-15, the stable isotope of nitrogen, has also been used. It is incorporated mainly into proteins.
§  Radioactive isotopes have the advantages of being detectable in very low quantities, in being easily measured by scintillation counting or other radiochemical methods, and in being localizable to particular regions of a cell, and quantifiable by autoradiography. Many compounds with the radioactive atoms in specific positions can be prepared, and are widely available commercially. In high quantities they require precautions to guard the workers from the effects of radiation—and they can easily contaminate laboratory glassware and other equipment. For some isotopes the half-life is so short that preparation and measurement is difficult.
By organic synthesis it is possible to create a complex molecule with a radioactive label that can be confined to a small area of the molecule. For short-lived isotopes such as 11C, very rapid synthetic methods have been developed to permit the rapid addition of the radioactive isotope to the molecule. For instance apalladium catalysed carbonylation reaction in a microfluidic device has been used to rapidly form amides[8] and it might be possible to use this method to form radioactive imaging agents for PET imaging.[17]
§  ³H, Tritium, the radioisotope of hydrogen, it available at very high specific activities, and compounds with this isotope in particular positions are easily prepared by standard chemical reactions such as hydrogenation of unsaturated precursors. The isotope emits very soft beta radiation, and can be detected by scintillation counting.
§  11C, Carbon-11 can be made using a cyclotron, boron in the form of boric oxide is reacted with protons in a (p,n) reaction. An alternative route is to react 10B with deuterons. By rapid organic synthesis, the 11C compound formed in the cyclotron is converted into the imaging agent which is then used for PET.
§  14C, Carbon-14 can be made (as above), and it is possible to convert the target material into simple inorganic and organic compounds. In most organic synthesis work it is normal to try to create a product out of two approximately equal sized fragments and to use a convergent route, but when a radioactive label is added, it is normal to try to add the label late in the synthesis in the form of a very small fragment to the molecule to enable the radioactivity to be localised in a single group. Late addition of the label also reduces the number of synthetic stages where radioactive material is used.
§  18F, fluorine-18 can be made by the reaction of neon with deuterons, 20Ne reacts in a (d,4He) reaction. It is normal to use neon gas with a trace of stable fluorine(19F2). The 19F2 acts as a carrier which increases the yield of radioactivity from the cyclotron target by reducing the amount of radioactivity lost by absorption on surfaces. However, this reduction in loss is at the cost of the specific activity of the final product.
[edit]Nuclear magnetic resonance (NMR)
NMR spectroscopy uses the net spin of nuclei in a substance upon energy absorption to identify molecules. This has now become a standard spectroscopic tool within synthetic chemistry. One major use of NMR is to determine the bond connectivity within an organic molecule.
NMR imaging also uses the net spin of nuclei (commonly protons) for imaging. This is widely used for diagnostic purposes in medicine, and can provide detailed images of the inside of a person without inflicting any radiation upon them. In a medical setting, NMR is often known simply as "magnetic resonance" imaging, as the word 'nuclear' has negative connotations for many people.
[edit]References
1.     ^ [1]
3.     ^ Meitner L, Frisch OR (1939) Disintegration of uranium by neutrons: a new type of nuclear reaction Nature 143:239-240 [2]
4.     ^ J.H. Burns, "Solvent-extraction complexes of the uranyl ion. 2. Crystal and molecular structures of catena-bis(.mu.-di-n-butyl phosphato-O,O')dioxouranium(VI) and bis(.mu.-di-n-butyl phosphato-O,O')bis[(nitrato)(tri-n-butylphosphine oxide)dioxouranium(VI)]", Inorganic Chemistry, 1983, 22, 1174-1178
5.     ^ Decontamination of surfaces, George H. Goodalland Barry.E. Gillespie, United States Patent 4839100
6.     ^ Glänneskog H (2004) Interactions of I2 and CH3I with reactive metals under BWR severe-accident conditions Nuclear Engineering and Design 227:323-9
§  Glänneskog H (2005) Iodine chemistry under severe accident conditions in a nuclear power reactor, PhD thesis, Chalmers University of Technology, Sweden
§  For other work on the iodine chemistry which would occur during a bad accident, see [3][4][5]
7.     ^ Peter Atkins and Julio de Paula, Atkins' Physical Chemistry, 8th edn (W.H. Freeman 2006), p.816-8
8.     ^ Miller PW et al. (2006) Chemical Communications 546-548
[edit]Text books
Radioactivity Radionuclides Radiation
Textbook by Magill, Galy. ISBN 3-540-21116-0, Springer, 2005.
Radiochemistry and Nuclear Chemistry
Comprehensive textbook by Choppin, Liljenenzin and Rydberg. ISBN 0-7506-7463-6, Butterworth-Heinemann, 2001 [18].
Radioactivity, Ionizing radiation and Nuclear Energy
Basic textbook for undergraduates by Jiri Hála and James D Navratil. ISBN 80-7302-053-X, Konvoj, Brno 2003 [19]
The Radiochemical Manual
Overview of the production and uses of both open and sealed sources. Edited by BJ Wilson and written by RJ Bayly, JR Catch, JC Charlton, CC Evans, TT Gorsuch, JC Maynard, LC Myerscough, GR Newbery, H Sheard, CBG Taylor and BJ Wilson. The radiochemical centre (Amersham) was sold via HMSO, 1966 (second edition)





Radiation and nuclear reactions

In 1902, Frederick Soddy proposed the theory that "radioactivity is the result of a natural change of an isotope of one element into an isotope of a different element." Nuclear reactions involve changes in particles in an atom's nucleus and thus cause a change in the atom itself. All elements heavier than bismuth (Bi) (and some lighter) exhibit natural radioactivity and thus can "decay" into lighter elements. Unlike normal chemical reactions that form molecules, nuclear reactions result in the transmutation of one element into a different isotope or a different element altogether (remember that the number of protons in an atom defines the element, so a change in protons results in a change in the atom). There are three common types of radiation and nuclear changes:
1.    Alpha Radiation (α) is the emission of an alpha particle from an atom'snucleus. An α particle contains two protons and two neutrons (and is similar to a He nucleus:   ). When an atom emits an a particle, the atom's atomic mass will decrease by four units (because two protons and two neutrons are lost) and the atomic number (z) will decrease by two units. The element is said to "transmute" into another element that is two z units smaller. An example of an a transmutation takes place when uranium decays into the element thorium (Th) by emitting an alpha particle, as depicted in the following equation:
238 
92
U
4 
2
He
+
234 
90
Th
(Note: in nuclear chemistry, element symbols are traditionally preceded by their atomic weight (upper left) and atomic number (lower left).
2.    Beta Radiation (â) is the transmutation of a neutron into a proton and an electron (followed by the emission of the electron from the atom's nucleus:   ). When an atom emits a β particle, the atom's mass will not change (since there is no change in the total number of nuclear particles), however the atomic number will increase by one (because the neutron transmutated into an additional proton). An example of this is the decay of the isotope of carbon named carbon-14 into the element nitrogen:
14 
6
C
0 
-1
e
+
14 
7
N
3.    Gamma Radiation (ã) involves the emission of electromagnetic energy(similar to light energy) from an atom's nucleus. No particles are emitted during gamma radiation, and thus gamma radiation does not itself cause the transmutation of atoms, however γ radiation is often emitted during, and simultaneous to, α or β radioactive decay. X-rays, emitted during the beta decay of cobalt-60, are a common example of gamma radiation.

Half-life

Radioactive decay proceeds according to a principal called the half-life. The half-life (T½) is the amount of time necessary for one-half of the radioactive material to decay. For example, the radioactive element bismuth (210Bi) can undergo alpha decay to form the element thallium (206Tl) with a reaction half-life equal to five days. If we begin an experiment starting with 100 g of bismuth in a sealed lead container, after five days we will have 50 g of bismuth and 50 g of thallium in the jar. After another five days (ten from the starting point), one-half of the remaining bismuth will decay and we will be left with 25 g of bismuth and 75 g of thallium in the jar. As illustrated, the reaction proceeds in halfs, with half of whatever is left of the radioactive element decaying every half-life period.
Radioactive Decay of Bismuth-210 (T½ = 5 days)
The fraction of parent material that remains after radioactive decay can be calculated using the equation:
Fraction remaining = 
 1  
2n
(where n = # half-lives elapsed)

The amount of a radioactive material that remains after a given number of half-lives is therefore:
Amount remaining = Original amount * Fraction remaining

The decay reaction and T½ of a substance are specific to the isotope of the element undergoing radioactive decay. For example, Bi210 can undergoa decay to Tl206 with a T½ of five days. Bi215, by comparison, undergoes bdecay to Po215 with a T½ of 7.6 minutes, and Bi208 undergoes yet another mode of radioactive decay (called electron capture) with a T½ of 368,000 years!

Stimulated nuclear reactions

While many elements undergo radioactive decay naturally, nuclear reactions can also be stimulated artificially. Although these reactions also occur naturally, we are most familiar with them as stimulated reactions. There are two such types of nuclear reactions:
1. Nuclear fission: reactions in which an atom's nucleus splits into smaller parts, releasing a large amount of energy in the process. Most commonly this is done by "firing" a neutron at the nucleus of an atom. The energy of the neutron "bullet" causes the target element to split into two (or more) elements that are lighter than the parent atom. 
The Fission Reaction of Uranium-235
Concept simulation - Illustrates a nuclear fission reaction.
(Flash required)
During the fission of U235, three neutrons are released in addition to the two daughter atoms. If these released neutrons collide with nearby U235 nuclei, they can stimulate the fission of these atoms and start a self-sustaining nuclear chain reaction. This chain reaction is the basis of nuclear power. As uranium atoms continue to split, a significant amount of energy is released from the reaction. The heat released during this reaction is harvested and used to generate electrical energy.
Concept simulation - Reenacts controlled and uncontrolled nuclear chain reactions.
(Flash required)
2. Nuclear fusion: reactions in which two or more elements "fuse" together to form one larger element, releasing energy in the process. A good example is the fusion of two "heavy" isotopes of hydrogen (deuterium: H2 and tritium: H3) into the element helium. 
Nuclear Fusion of Two Hydrogen Isotopes
Concept simulation - Reenacts the fusion of deuterium and tritium inside of a tokamak reactor.
(Flash required)
Fusion reactions release tremendous amounts of energy and are commonly referred to as thermonuclear reactions.  Although many people think of the sun as a large fireball, the sun (and all stars) are actually enormous fusion reactors.  Stars are primarily gigantic balls of hydrogen gas under tremendous pressure due to gravitational forces.  Hydrogen molecules are fused into helium and heavier elements inside of stars, releasing energy that we receive as light and heat.